This research line is mainly focused on the design and characterization of advanced micro- and nano-photonic devices based on plasmonic nanostructures and other complex electromagnetic structures. Plasmonic nanostructures are made of metals, and thus they allow for overcoming the diffraction limit and achieve light manipulation at subwavelength scales. Our final goal is to implement plasmonic micro- and nano-structures on silicon photonics circuits, therefore making use of the fabrication facilities available at NTC.


But not only plasmonic nanostructures can improve the performance of current state-of-the-art silicon photonic chips. Recently, optomechanics has revealed itself as a research hot-topic since it provide the adequate mechanisms to make light and sound interact at the nanoscale. In our group we deal with optomechanical cavities built on silicon chips to manipulate GHz vibrations optically with the final aim of getting ultra-compact microwave photonic circuitry on silicon.


We are convinced that in future nanophotonic chips light will to interact with free-electrons in metals (via plasmons) as well as with mechanical vibrations (in suspended nanostructures via optomechanical forces). Therefore, the integration of plasmonic and optomechanical components onto silicon-photonics chips is a key step towards future nanophotonic chips, which is a goal pursued in our research line. Envisaged applications include signal processing, microwave photonics, nanospectroscopy and chemo-sensing.

  1. Injection locking in an optomechanical coherent phonon source

    Guillermo Arregui, Martín F. Colombano, Jeremie Maire, Alessandro Pitanti, Néstor E. Capuj, Amadeu Griol, Alejandro Martínez, Clivia M. Sotomayor-Torres and Daniel Navarro-Urrios

    Nanophotonics 10, 1319–1327, 2021.


  2. Vertical Engineering for Large Brillouin Gain in Unreleased Silicon-Based Waveguides

    Laura Mercadé, Alexander V. Korovin, Yan Pennec, Jouni Ahopelto, Bahram Djafari-Rouhani, and Alejandro Martínez

    Phys. Rev. Applied 15, 034021, 2021.


  3. Interfering Plasmons in Coupled Nanoresonators to Boost Light Localization and SERS

    Angelos Xomalis, Xuezhi Zheng, Angela Demetriadou, Alejandro Martínez, Rohit Chikkaraddy and Jeremy J. Baumberg

    Nano Lett.  21, 2512–2518, 2021.


  4. Floquet Phonon Lasing in Multimode Optomechanical Systems

    Laura Mercadé, Karl Pelka, Roel Burgwal, André Xuereb, Alejandro Martínez, and Ewold Verhagen
    Phys. Rev. Lett. 127, 073601, 2021.


  5. Radiationless anapole states in on-chip photonics

    Evelyn Díaz-Escobar, Thomas Bauer , Elena Pinilla-Cienfuegos, Ángela I. Barreda, Amadeu Griol, L. Kuipers and Alejandro Martínez

    Light: Science & Applications 10, 204, 2021.


  6. Photonic Frequency Conversion of OFDM Microwave Signals in a Wavelength-Scale Optomechanical Cavity

    Laura Mercadé, María Morant, Amadeu Griol, Roberto Llorente, and Alejandro Martínez

    Laser and Photonics Reviews 2100175, 2021.


  7. Performance improvement of a silicon nitride ring resonator biosensor operated in the TM mode at 1310 nm

    Lucía Castelló-Pedrero, María I. Gómez-Gómez, Jaime García-Rupérez, Amadeu Griol, and Alejandro Martínez

    BiomedOpt. Express 12, 7244-7260, 2021.


  8. Thermal Properties of Nanocrystalline Silicon Nanobeams

    Jeremie Maire, Emigdio Chavez-Angel, Guillermo Arregui, Martin F. Colombano, Nestor E. Capuj, Amadeu Griol, Alejandro Martinez, Daniel Navarro-Urrios, Jouni Ahopelto, Clivia M. Sotomayor-Torres, 

    Adv. FunctMater. 2105767, 2021. 


  9. Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration

    Ángela I. Barreda, Mario Zapata-Herrera, Isabelle M. Palstra, Laura Mercadé, Javier Aizpurua, A. Femius Koenderink, and Alejandro Martínez

    Photon. Res. 9 (12), 2398-2419, 2021.


  10. Continuous-Wave Frequency Upconversion with a Molecular Optomechanical Nanocavity

    W. Chen, P. Roelli, H. Hu, S. VerlekarS. P. Amirtharaj, A. I. Barreda, T. J. Kippenberg, M. Kovylina, E. Verhagen, A Martínez, C. Galland

    Science 374, 1264-1267, 2021. 


  11. Detecting mid-infrared light by molecular frequency upconversion with dual-wavelength hybrid nanoantennas

    A. XomalisX. Zheng, R. Chikkaraddy, Z. Koczor-Benda, E. Miele, E. Rosta, G. A. E. Vandenbosch, A. Martínez, J. J. Baumberg,

    Science 374, 1268-1271, 2021.


  12. High-Frequency Mechanical Excitation of a Silicon Nanostring with Piezoelectric Aluminum Nitride Layers

    Alessandro Pitanti, Tapani Makkonen, Martin F. Colombano, Simone Zanotto, Leonardo Vicarelli, Marco Cecchini, Amadeu Griol, Daniel Navarro-Urrios, Clivia Sotomayor-Torres, Alejandro Martínez, and Jouni Ahopelto
    Phys. Rev. Applied 14, 014054, 2020.


  13. Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides

    J. Enrique Vázquez-Lozano and Alejandro Martínez

    Laser and Photonics Reviews 14, 1900422, 2020.


  14. Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap

    Laura Mercadé, Leopoldo L. Martín, Amadeu Griol, Daniel Navarro-Urrios and Alejandro Martínez

    Nanophotonics 9(11), 3535, 2020.


  15. Dispersive optomechanics of supercavity modes in high-index disks

    Laura Mercadé, Ángela Barreda and Alejandro Martínez

    Optics Letters 45, 5238, 2020.


  16. Properties of nanocrystalline silicon probed by optomechanics

    D. Navarro-Urrios, M. F. Colombano, J. Maire, E. Chávez-Ángel, G. Arregui, N. E. Capuj, A. Devos, A. Griol, L. Bellieres, A. Martínez, K. Grigoras, T. Häkkinen, J. Saarilahti, T. Makkonen, C. M. Sotomayor-Torres, and J. Ahopelto

    Nanophotonics 9, 4819-4829, 2020.


  17. Near-Field Unidirectional Excitation … and Beyond

    J. Enrique Vázquez-Lozano, Alejandro Martínez,
    Optics and Photonics News, Year in Optics, p. 58, 2019.


  18. Near-Field Directionality Beyond the Dipole Approximation: Electric Quadrupole and Higher-Order Multipole Angular Spectra

    J. Enrique Vázquez-Lozano, Alejandro Martínez, and Francisco J. Rodríguez-Fortuño,
    Phys. Rev. Applied 12, 024065, 2019.


  19. SERS Detection via Individual Bowtie Nanoantennas Integrated in Si3N4 Waveguides

    J. Losada, A. Raza, S. Clemmen, A. Serrano, A. Griol, R. Baets, A. Martínez,
    IEEE J. Selected Top. Quantum Electron. vol. 25, no. 3, 4600806, 2019.


  20. Synchronization of Optomechanical Nanobeams by Mechanical Interaction

    M. F. Colombano, G. Arregui, N. E. Capuj, A. Pitanti, J. Maire, A. Griol, B. Garrido, A. Martinez, C. M. Sotomayor-Torres, D. Navarro-Urrios
    Phys. Rev. Lett., 123, 017402, 2019.


  21. Generalizing Optical Chirality to an Arbitrary Medium

    J. Enrique Vázquez-Lozano, Alejandro Martínez,
    Optics and Photonics News, Year in Optics 29, 2018.


  22. Optical modulation of coherent phonon emission in optomechanical cavities

    J. Maire, N. E. Capuj, M. F. Colombano, A. Griol, A. Martinez, C. M. Sotomayor-Torres, D. Navarro-Urrios
    APL Photonics 3, 126102, 2018.


  23. Metamaterial Platforms for Spintronic Modulation of Mid-Infrared Response under Very Weak Magnetic Field

    G. Armelles, L. Bergamini, N. Zabala, F. García, M. L. Dotor, L. Torné, R. Alvaro, A. Griol, A. Martínez, J. Aizpurua, A. Cebollada, ACS Photon. 5, 3956–3961, 2018.


  24. Optical Chirality in Dispersive and Lossy Media

    J. Enrique Vázquez-Lozano, Alejandro Martínez
    Phys. Rev. Lett. 121, 043901, 2018.


  25. Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip

    A. Espinosa-Soria , E. Pinilla-Cienfuegos, F. J. Díaz-Fernández, A. Griol, J. Martí, A. Martínez
    ACS Photon. 5, 2712−2717, 2018.


  26. Nanocrystalline silicon optomechanical cavities

    D. Navarro-Urrios, N. E. Capuj, J. Maire, M. Colombano, J. Jaramillo-Fernandez, E. Chavez-Angel, L. L. Martín, L. Mercade, A. Griol, A. Martínez, C. M. Sotomayor-Torres, J. Ahopelto
    Opt. Express 26, 9829-9839, 2018.


  27. Classical Emergence of Intrinsic Spin-Orbit Interaction of Light at the Nanoscale

    J. Enrique Vázquez-Lozano, Alejandro Martínez
    Phys. Rev. A 97, 033804, 2018.


  28. Polarimetry enabled by nanophotonics

    A. Martínez
    Science 362, 6416, 750-751, 2018


  29. On-chip optimal Stokes nanopolarimetry based on spin-orbit interaction of light

    Alba Espinosa-Soria, Francisco J. Rodríguez-Fortuño, Amadeu Griol, Alejandro Martínez
    Nano Lett. 17, 3139-3144, 2017.


  30. Nonlinear dynamics and chaos in an optomechanical beam

    D. Navarro-Urrios, N. E. Capuj, M. F. Colombano, P. D. Garcia, M. Sledzinska, F. Alzina, A. Griol, A. Martínez, C. M. Sotomayor-Torres
    Nature Commun. 8, 14965, 2017.


  31. Fano resonances and electromagnetically induced transparency in silicon waveguides loaded with plasmonic nanoresonators

    Rubén Ortuño, Mario Cortijo, Alejandro Martínez
    J. Opt. 19, 025003, 2017.


  32. Diffusive-light invisibility cloak for transient illumination

    B. Orazbayev, M. Beruete, A. Martínez, C. García-Meca
    Phys. Rev. A 94, 063850, 2016.


  33. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics

    F. J. Rodriguez-Fortuño, A. Espinosa-Soria, A. Martínez
    Topical Review in J. Opt. 18, 123001, 2016.


  34. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps

    Alba Espinosa-Soria, Amadeu Griol, Alejandro Martínez
    Opt. Express 24, 9592-9601, 2016.


  35. Transverse spin and spin-orbit coupling in silicon waveguides

    Alba Espinosa-Soria, Alejandro Martínez
    IEEE Photon. Technol. Lett. 28, 1561, 2016.


  36. Lateral forces on circularly polarizable particles near a surface

    F. J. Rodríguez-Fortuño, N. Engheta, A. Martínez, A. V. Zayats
    Nature Comm. 6, 879, 2015.


Alejandro Martínez - Group leader

Elena Pinilla Cienfuegos - Postdoctoral researcher

Víctor Jesús Gómez Hernández - Postdoctoral researcher

Laura Mercadé Morales - Postdoctoral researcher

Juan Enrique Vázquez-Lozano - Predoctoral researcher

Evelyn Díaz Escobar - Predoctoral researcher

Ana Díaz Rubio - Postdoctoral researcher

María Isabel Gómez Gómez - Senior researcher

Javier Redolat Querol - Predoctoral researcher

Lucía Castelló Pedrero - Proyectista

Laura Bonilla Hernández - Proyectista

Raúl López March - Proyectista

Ana Sanmartín Senent - Proyectista

Sofiya Zorina - Proyectista

Juan Carlos Gómez Fresneda - Proyectista

Diego Safont Safont - Proyectista

Eva Zafra Blázquez - Proyectista

Pepe Ausina Gimeno - Proyectista

María Camarena Pérez - Proyectista


Former members

  • Dr. Francisco José Rodríguez-Fortuño – LinkedIn / Google Scholar


©2022 Nanophotonics Technology Center

Aviso legal. Diseño web.  Marketing digital El uso de este sitio web constituye la aceptación de la Política de Privacidad.

Log in with your credentials

Forgot your details?